63/1 (SEM-3) ECO HCC 6

2020

(Held in 2021)

ECONOMICS

Paper: CC-6

(Mathematical Methods in Economics—II)

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Answer/Choose the correct option of the following: 1×6=6
 - (a) Identify the identity matrix of the following:

(i)
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

(ii)
$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

(iii)
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

(iv)
$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

1

(2)

- (b) Find $\frac{dy}{dx}$ of the function, $y = 5e^{3x}$.
 - (i) 15e3x
 - (ii) $5e^{3x}$
 - (iii) 3e^{3x}
 - (iv) e^{3x}
- (c) What is scalar multiplication?
- (d) Given

 $S = \{1, 5, 9, b, c\}$ and $T = \{2, 5, 6, b, d\}$

Then

- (i) $S \cup T = \{1, 2, 5, 6, 9, b, c, d\}$
- (ii) $S \cup T = \{b, c, d\}$
- (iii) $S \cup T = \{1, 2, 5, 6, 9\}$
- (iv) All of the above
- (e) Explain the meaning of optimisation.
- (f) Give an example of null set.

KB21/181

(Continued)

(3)

- 2. Answer the following questions: 2×5=10
 - (a) Find the inverse of the following matrices:

bas
$$\pi(i)$$
 $\begin{bmatrix} 5 & 3 \\ 2 & 3 \end{bmatrix}$

(ii)
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

- (b) Find $\frac{dy}{dx}$, if $y = 3x^3(4x^2 2x)$.
- (c) Explain the criteria for relative extrema.
- (d) Explain the first-order and secondorder conditions for unconstraint maxima and minima with more than one explanatory variables.
- (e) Explain polynomial function.
- 3. Answer the following questions (any six): $5\times6=30$
 - (a) Given the matrices

$$A = \begin{bmatrix} 3 & 2 & 0 \\ 4 & 1 & 3 \\ 2 & 2 & 3 \end{bmatrix}_{3\times 3}, \quad B = \begin{bmatrix} 2 & 1 & 2 \\ 4 & 0 & 1 \\ 2 & 2 & 5 \end{bmatrix}_{3\times 3}$$

Find AB.

KB21/181

(Turn Over)

(4)

- (b) For the Cobb-Douglas production function $Q = AK^{\alpha}L^{1-\alpha}$, find the marginal productivity of labour and marginal productivity of capital.
- (c) Given that, Q_d is demand function and Q_s is supply function:

$$Q_d = a - bP (a, b > 0)$$

 $Q_s = -c + dP (c, d > 0)$

Find out equilibrium price and quantity.

- (d) The average revenue function is given by AR = 100 3q. Find out the elasticity of demand when q = 5.
- (e) Explain the procedure of solving firstorder difference equation.
- (f) Show that the elasticity of substitution is equal to unity in C-D production function.
- (g) The total cost function of a firm is given by $C = \frac{1}{3}Q^3 + 6Q^2 + 12Q$, where Q is quantity produced. Find the marginal cost function and average cost function.
- (h) Calculate the adjoint of A, where

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}_{3 \times 3}$$

(Continued)

(5)

- (i) Explain the procedure of solving firstorder differential equation.
- 4. Answer the following questions (any two): $10 \times 2 = 20$
 - (a) The demand functions of a monopolist in two different markets are $P_1 = 53 4Q_1$ $P_2 = 24 3Q_2$ and total cost function is C = 20 + 5Q, where P_1 and P_2 are the prices and Q_1 and Q_2 are the output in market 1 and 2 respectively, such that $Q = Q_1 + Q_2$. Find—
 - (i) profit maximising output;
 - (ii) maximum profit.

7+3=10

(b) A firm has the following Total Revenue (TR) and Total Cost (TC) function:

$$TR = 160Q - Q^2$$
$$TC = 200 + 4Q + 7Q^2$$

A subsidy of \$\mathbb{e}\$ 4 per unit of output is paid. Analyse the effect of subsidy on equilibrium output.

(c) The utility function of a consumer that has to be maximized subject to budget constraint $\beta = xP_x + yP_y$ is given by u = xy. Find out demand functions for x and y.

KB21/181

- 5. Answer any one of the following questions: 14
 - (a) Given the market model:

$$Q_d = 14 - 3P$$

$$Q_s = -10 + 2P$$

$$\frac{dP}{dt} = 4(Q_d - Q_s)$$

Analyse the market model for stability. 14

- (b) A firm has total cost function, $C = Q^3 7Q^2 + 20 + 16$, where Q is the output produced. Derive—
 - (i) average variable cost (AVC) function and show that when AVC is minimum, AVC = MC;
 - (ii) average cost function and check when Q = 4, the average cost is minimum and at that level of output MC = AC. 7+7=14

* * *